qsfp-transceivers.com
Welcome
Login / Register

Most Popular Articles


  • Identify Types of Network Cables and Connectors

    There are three types of network cables: fiber, twisted pair, and coaxial.

    Fiber is the most expensive of the three and can run the longest distance. A number of types of connectors can work with fiber, but three you must know are SC, ST, and LC.

    Twisted pair is commonly used in office settings to connect workstations to hubs or switches. It comes in two varicties: unshielded (UTP) and shielded (STP), The two types of connectors commonly used are RJ-11 (four wires and popular with telephones), and RJ-45 (eight wires and used with xBaseT networks—100BaseT, 1000BaseT, and so forth). Two common wiring standards are T568A and T568B.

    Coaxial cabling is not as popular as it once was, but it's still used with cable television and some legacy networks. The two most regularly used connectors are F-conectors (television cabling) and BNC (10Base2, and so on).

    Fiber

    Fiber-optic cabling is the most expensive type. Although it's an excellent medium, it's often not used because of the cost of implementing it. It has a glass core within a rubber outer coating and uses beams of light rather than electrical signals to relay data. Because light doesn't diminish over distance the way electrical signals do, this cabling can run for distances measured in kilometers with transmission speeds from 100 Mbps up to 1 Gbps higher.

    Fiber optic cable

    Often, fiber is used to connect runs to wiring closets where they break out into UTP or other cabling types, or as other types of backbones. Fiber-optic cable can use either ST, SC, or LC connector. ST is a barrel-shaped connector, whereas SC is squared and easier to connect in small spaces.The LC connector looks similar to SC but adds a flange on the top (much like an RJ-45 connector) to keep it securely connected.

    st sc lc connectors

    Note: In addition to these listed in the A + objectives, other connectors are used with fiber. FC connectors may also be used but are not as common. MT-RJ is a popular connector for two fibers in a small form factor.

    Twisted Pair

    There are two primary types of twisted-pair cabling (with categories beneath cach that are shielded twisted pair (STP) and unshielded twisted pair (UTP). In both cases, the cabling is made up of pairs of wires twisted around each other.

    UTP offers no shielding (hence the name) and is the network cabling type most prone to outside interference. The interference can be from a fluorescent light ballast, eletrical motor, or other such source (known as eletromagnetic interference [EMI]) or from wires being too close together and signals jumping across them (known as crosstalk), STP adds a foil shield around the twisted wires to protect against EMI.

    Twisted Pair

    STP cable uses IBM data connector (IDC) or universal data connector (UDC) ends and connects to token ring networks. While you need to know STP for the exam, you are not required to have any knowledge of the connectors associated with it. You must, however, know that most UTP cable uses RJ-45 connectors, which look like telephone connectors (RJ-11) but have eight wires instead of four.

    RJ-45 connectors

    Two wiring standards are commonly used with twisted-pair cabling:T568A and T568B (sometimes referred to simply as 568A and 568B). These are telecommunications standards from TIA and EIA that specify the pin arrangements for the RJ-45 connectors on UTP or STP cables. The number 568 refers to the order in which the wires within the Category 5 cable are terminated and attached to the connector. The signal is identical for both.

    T568A was the first standard, released in 1991. Ten years later, in 2001, T568B was released. Pin numbers are read left to right, with the connector tab facing down. Notice that the pin-outs stay the same, and the only difference is in the color coding of the wiring.

     

    Pin assignments for T568A and T568B

    Note: Mixing cables can cause communication problems on the network. Before installing a network or adding a new component to it, make sure the cable being used is in the correct wiring standard.

    Coaxial

    Coaxial cable, or coax, is one of the oldest media used in networks. Coax is built around a center conductor or core that is used to carry data from point to point. The center conductor has an insulator wrapped around it, a shield over the insulator, and a nonconductive sheath around the shielding. This construction allows the conducting core to be relatively free from outside interference. The shielding also prevents the conducting core from emanating signals externally from the cable.

    Note: Before you read any further, accept the fact that the odds are incredibly slim that you will ever need to know about coax for a new installation in the real world (with the possible exception of RG-6, which is used from the wall to cable modem). If you do come across it, it will be in an existing installation and one of the first things you'll recommend is that it be changed. 

    Read more »
  • Fiber Optic Overview

    Fiber Optic Communication - The Future Of Networking & Data Transmission

    Fiber optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information.

    First developed in the 1970s, fiber-optic communication systems have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electrical transmission, optical fibers have largely replaced copper wire communications in core networks. Optical fiber is used by many telecommunications companies to transmit telephone signals, Internet communication, and cable television signals. Researchers have reached internet speeds of over 100 petabits per second using fiber-optic communication.

    Fiber's advantages has led to its use as the backbone of all of today's communications, telecom, Internet, CATV, etc. - even wireless, where towers are connected on fiber and antennas are using fiber up the towers.

    Fiber Communication Example

     

    Optical Fiber - The Better Solution

    Fiber vs. Copper. Fiber is the better solution!

    This photo from the infancy of fiber optics (to the right) was used to illustrate that one tiny optical fiber could carry more communications signals than a giant copper cable. Today one single mode fiber could carry the same amount of communications as 1000 of those old copper cables!

    Fiber offers thousands of times more bandwidth than copper cables and can go more than 1000 times further before needing repeaters - both of which contribute to the immense economic advantage of fiber optics over copper. You can do a similar analysis for using wireless transmission also, but wireless is limited by the available wireless spectrum which is overcrowded because of everyone's desire to use more mobile devices.

    Why Convert From Copper Cable To Fiber Optic Cable?

    If you need some convincing before you make your first fiber optic cable purchase keep the following facts in mind.

    CheckOptical Fiber - Much More Efficient & Secure

    Fiber optic cable operates much more efficiently and is more secure than traditional copper cabling. Fiber can transmit far more information over greater distance and with a higher clarity while offering a more secure connection. Fiber optic cable is resistant to electromagnetic interference and generates no radiation of its own. This point is important in locations where high levels of security must be maintained. Copper wire radiates energy that can be monitored. In contrast, taps in  Fiber optic cable  Fiber  are easily detected. Copper cable, is also subject to problems with attenuation, capacitance, and crosstalk.

    CheckOptical Fiber - Does Not Require Grounding

    Since fiber is made of glass, which is a bad electrical conductor, it does not require grounding and shields itself from other electrical interference. Fiber cables can be run near electrical cables without fear that it will weaken or interrupt the signal.

    CheckOptical Fiber - Corrosion Resistant

    Fiber optic cable does not corrode and is not as sensitive to water or chemicals. This means you can safely run fiber cable in direct contact with dirt or in close proximity to chemicals (with the proper outer jacket materials).

    CheckOptical Fiber - The Safer Choice

    Since fiber is not a good conductor of electricity, an installer or user will be safe from electrocution if there is a break in the outer jacket and the fiber is exposed.

     

    How Fiber Optic Communication Works

    The process of communicating using fiber-optics involves the following basic steps: Creating the optical signal involving the use of a transmitter, relaying the signal along the fiber, ensuring that the signal does not become too distorted or weak, receiving the optical signal, and converting it into an electrical signal.

    Fiber (or fibre) consists of a strand of pure glass a little larger than a human hair. Fiber optic cable employs photons and pulsing laser light for the transmission of digital signals. Photons pass through the glass with negligible resistance. As light passes through the cable, its rays bounce off the cladding in different ways as shown below. The optic core of fiber optic cable is pure silicon dioxide. The electronic 1s and 0s of computers are converted to optically coded 1s and 0s. A light-emitting diode on one end of the cable then flashes those signals down the cable. At the other end, a simple photodetector collects the light and converts it back to electrical signals for transmission over copper cable networks.

    Fiber light source and transmission illustartion.

    Step index multimode was the first fiber design but is too slow for most uses, due to the dispersion caused by the different path lengths of the various modes. Step index fiber is rare - only POF uses a step index design today.

    Graded index multimode fiber uses variations in the composition of the glass in the core to compensate for the different path lengths of the modes. It offers hundreds of times more bandwidth than step index fiber - up to about 2 gigahertz.

    Singlemode fiber shrinks the core down so small that the light can only travel in one ray. This increases the bandwidth to almost infinity - but it's practically limited to about 100,000 gigahertz - that's still a lot!

     

    Optic Fiber Cable Construction

    Optic Fiber Cable Structure.

     

    Optical fiber consists of a core and a cladding layer, selected for total internal reflection due to the difference in the refractive index between the two. In practical fibers, the cladding is usually coated with a layer of acrylate polymer or polyimide. This coating protects the fiber from damage but does not contribute to its optical waveguide properties.

    Individual coated fibers (or fibers formed into ribbons or bundles) then have a tough resin buffer layer and/or core tube(s) extruded around them to form the cable core. Several layers of protective sheathing, depending on the application, are added to form the cable.

    Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.

    A “dopant” is added to the core to actually make it less pure than the cladding. This changes the way the core transmits light. Because the cladding has different light properties than the core, it tends to keep the light within the core. Because of these properties, fiber optic cable can be bent around corners and can be extended over distances of up to 100 miles.

    A typical laser transmitter can be pulsed billions of times per second. In addition, a single strand of glass can carry light in a number of wavelengths (colors), meaning that the data-carrying capacity of fiber optic cable is potentially thousands of times greater than copper cable.

     

    Types Of Fiber Optic Cable

    • Plastic cable, which works only over a few meters, is inexpensive and works with inexpensive components.
    • Plastic-coated silica cable offers better performance than plastic cable at a little more cost.
    • Single-index monomode fiber cable is used to span extremely long distances. The core is small and provides high bandwidth at long distances. Lasers are used to generate the light signal for single-mode cable. This cable is the most expensive and hardest to handle, but it has the highest bandwidths and distance ratings.
    • Step-Index multimode cable has a relatively large diameter core with high dispersion characteristics. The cable is designed for the LAN environment and light is typically generated with a LED (light-emitting diode).
    • Graded-index multimode cable has multiple layers of glass that contain dispersions enough to provide increases in cable distances.

    Cable specifications list the core and cladding diameters as fractional numbers. For example, the minimum recommended cable type for FDDI (Fiber Distributed Data Interface) is 62.5/125 micron multimode fiber optic cable.That means the core is 62.5 microns and the core with surrounding cladding is a total of 125 microns.

    • The core specifications for step-index and graded-index multimode cables range from 50 to 1,000 microns.
    • The cladding diameter for step mode cables ranges from 125 to 1,050 microns.
    • The core diameter for single-mode step cable is 4 to 10 microns, and the cladding diameter is from 75 to 125 microns.
    Choosing the right Optic Fiber Glass Type/ Fiber Mode.

     

    Indoor Vs. Outdoor Optic Fiber Cable Applications

    For  indoor applications, the jacketed fiber is generally enclosed, with a bundle of flexible fibrous polymer strength members like aramid (e.g. Twaron or Kevlar), in a lightweight plastic cover to form a simple cable. Each end of the cable may be terminated with a specialized optical fiber connector to allow it to be easily connected and disconnected from transmitting and receiving equipment.

    For outdoor applications or use in more strenuous environments, a much more robust cable construction is required. In loose-tube construction the fiber is laid helically into semi-rigid tubes, allowing the cable to stretch without stretching the fiber itself. This protects the fiber from tension during laying and due to temperature changes. Loose-tube fiber may be "dry block" or gel-filled. Dry block offers less protection to the fibers than gel-filled, but costs considerably less. Instead of a loose tube, the fiber may be embedded in a heavy polymer jacket, commonly called "tight buffer" construction. Tight buffer cables are offered for a variety of applications, but the two most common are "Breakout" and "Distribution".

    Breakout Cables normally contain a ripcord, two non-conductive dielectric strengthening members (normally a glass rod epoxy), an aramid yarn, and 3 mm buffer tubing with an additional layer of Kevlar surrounding each fiber. The ripcord is a parallel cord of strong yarn that is situated under the jacket(s) of the cable for jacket removal. Distribution Cables  have an overall Kevlar wrapping, a ripcord, and a 900 micrometer buffer coating surrounding each fiber. These fiber units are commonly bundled with additional steel strength members, again with a helical twist to allow for stretching.

    A critical concern in outdoor cabling is to protect the fiber from contamination by water. This is accomplished by use of solid barriers such as copper tubes, and water-repellent jelly or water-absorbing powder surrounding the fiber.

    Finally, the cable may be armored to protect it from environmental hazards, such as construction work or gnawing animals. Undersea cables are more heavily armored in their near-shore portions to protect them from boat anchors, fishing gear, and even sharks, which may be attracted to the electrical power that is carried to power amplifiers or repeaters in the cable.

    Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, dual use as power lines, installation in conduit, lashing to aerial telephone poles, submarine installation, and insertion in paved streets.

    To purchase your fiber cables, please click link below:

    Fiber Patch Cables

     

     

     

     

    Read more »
  • Feds get huge response to request for IoT input

    By Sean Kinney   www.industrialiot5G.com

     

     

    More than 100 companies suggest ways U.S. government can help advance the IoT

    Many industry watchers feel the U.S. is slipping behind other countries, particularly Germany and China, in creating a unified national strategy for development of the Internet of Things or IoT. But federal leaders, in the early stages of involvement, reached out to the telecom industry for guidance.

    Back in April the National Telecommunications and Information Administration, a part of the U.S. Department of Commerce, issued a “request for comments on the benefits, challenges and potential roles for the government in fostering the advancement of the Internet of Things.”

    Two months later and the call for comment has been met in spades with more than 130 filings coming from a broad swath of telecom interests including carriers like AT&T, T-Mobile, Verizon and Vodafone; vendors including Nokia, Ericsson, Huawei and Samsung; and industry trade groups like the Wi-Fi Alliance, Wireless Infrastructure Association, the Open Connectivity Foundation and the GSMA.

    Here’s a full list of the respondents and their filings with NTIA. A review of some of the filings indicates a strong industry expectation that the rapid uptake of IoT will require global coordination and will likely create new markets while disrupting existing ones.

    Verizon representatives told NTIA: “To support this explosion of IoT devices, a robust and secure underlying communications network must serve as a foundation. That network requires both increased commercial spectrum and development of the underlying core infrastructure. We encourage all stakeholders to work together to ensure that these necessary building blocks for IoT development are available and accessible. To enable sufficient spectrum to power this new wave of connected innovation, private and public sectors must continue to cooperate, not only to develop more ways to effectively share spectrum, but also to provide federal users incentives to free up spectrum for commercial licensed and unlicensed use. As potentially billions of new IoT devices are deployed, they will drive data growth that – combined with the parallel growth in overall data usage by consumer devices – will require new commercial spectrum allocations to accommodate the unprecedented demands for more bandwidth. This includes spectrum necessary to support 5G, since 5G’s super-fast speeds and low latency will help facilitate new IoT use cases.”

    Ericsson commented: “In Ericsson’s view, 5G is the technology that will unleash the true potential of the Internet of Things. To support the IoT’s development, the government should unleash the resources that will ensure U.S. leadership in 5G by releasing more spectrum for commercial use. Through network slicing, 5G technology will allow a single infrastructure to meet the very different needs of Massive and Critical IoT devices – it will enable networks to handle the incredible increase in data from the billions of low energy, low data devices, while also providing very high reliability, availability and security for critical uses. We also encourage the government to support global standards and best practices and to allow industry to continue to innovate and coalesce around the most favorable IoT solutions.”

    And from the GSMA’s point of view: “The United States should forbear from regulating IoT and avoid reflexively extending legacy regulations designed for outdated technologies to the IoT…The U.S. government should support and promote industry alignment around interoperable, industry-led specifications and standards across the global IoT ecosystem…The U.S. government should promote the allocation of globally harmonized spectrum that can support IoT…The U.S. government should encourage industry to build trust into IoT devices. Existing laws and regulations, operating in tandem with self-regulatory regimes and best practices, will provide sufficient protection to consumers as the IoT develops…Finally, the U.S. government should engage on a bilateral and multilateral basis, as appropriate, to ensure that international IoT activities similarly encourage competition, investment, and innovation. Regulatory interference at this stage—from any source—could lead to fragmentation and impede innovation, inhibiting the IoT’s ability to reach its full potential to deliver benefits to consumers.”

     

     

    Read more »
  • Mode Conditioning Patch Cable Tutorial

    There are bandwidth limitations of multimode fiber. Most current LAN networks are composed of about 90% multimode fiber. As the fiber cable plant is upgraded to single mode fiber cables, we must also provide a migration path that continues to reuse the installed multimode cable plant for as long as possible. However, there are some technical issues involved when using single mode equipment on existing multimode cable plant. The biggest problem is caused by Differential Mode Delay (DMD). It refers when a fast rise-time laser pulse is applied to multimode fiber, significant pulse broadening occurs due to the difference in propagation times of different modes within the fiber.

    To solve the problem, mode conditioning patch cable was developed as a solution for network applications where Gigabit Ethernet hubs with laser based transmitters are deployed. Mode conditioning patch cable is the mean to achieve the drive distance of installed fiber plant beyond its original intended applications. It allows customer upgrading their hardware technology without the cost of upgrading fiber plant. In addition, mode conditioning patch cable significantly improves data signal quality while increasing the transmission distance.

     

    What is Mode Conditioning Patch Cable?

    MCP

     

    Mode Conditioning Patch Cable, or Mode Conditioning Patchcord (MCP), is a duplex multimode patch cable that has a small length of single mode fiber at the start of the transmission length. Designed to "condition" the laser launch and obtain an effective bandwidth closer to that measured by the overfilled launch method, the MCP allows for laser transmitters to operate at gigabit rates over multimode fiber without being limited by DMD. The point is to excite a large number of modes in the fiber, weighted in the mode groups that are highly excited by overfill launch conditions, and to avoid exciting widely separated mode groups with similar power levels. This is achieved by launching the laser light into a single mode fiber, then coupling it into a multimode fiber that is off-center relative to the single mode fiber core. This is shown beside.

    Tips: Different offsets are required for 50µm and 62.5µm multimode fibers. Engineers have found that an offset of 17~23 µm can achieve an effective modal bandwidth equivalent to the overfill launch method for 62.5µm multimode fibers. And an offset of 10~16 µm is good for 50µm multimode fibers.

    The basic principle behind the cable is to launch laser into the small section of single mode fiber. The other end of single mode fiber is coupled to the multimode section of the cable with the offset from the center of the multimode fiber. This patch cable is required with transceivers (e.g.1000BASE-LX/LH, 10GBASE-LX4 and 10GBASE-LRM) that use both single mode and multimode fibers. When launching into multimode fiber, the transceiver can generate multiple signals that causes DMD which can severly limit transmission distances. The MCP removes these multiple signals, eliminating problems at the receiver end. Here is a figure that shows an MCP and how it is typically connected to a transceiver module. When required, it is inserted between a transceiver module and the multimode cable plant.

    MCP using with Transceivers

     

    Requirements for Using MCPs in Laser-Based Transmissions

    Gigabit Ethernet

    The requirement for MCP is specified only for 1000BASE-LX/LH transceivers transmitting in the 1300nm window and in applications over multimode fiber. MCP should never be used in 1000BASE-SX links in the 850nm window. MCP is required for 1000BASE-LX/LH applications over FDDI-grade, OM1, and OM2 fiber types. MCP should never be used for applications over OM3, also known as "laser-optimized fiber".

    Note:
     
    1. In some cases, customers might experience that a link would be operating properly over FDDI-grade, OM1 or OM2 fiber types without MCP. However please note there is no guarantee link will be operating properly over time, and the recommendation remains to use the MCP.
     
    2. There is a risk associated to this type of nonstandard deployment without MCP, especially when the jumper cable is an FDDI-grade or OM1 type. In such case the power coupled directly into a 62.5µm fiber could be as high as a few dBm and the adjacent receiver will be saturated. This can cause high bit error rate, link flaps, link down status and eventually irreversible damaged to the device.
     
    3. In the event customers remain reluctant to deploy MCP cables, and for customers using OM3 cables, please measure the power level before plugging the fiber into the adjacent receiver. When the received power is measured above -3dBm, a 5dB attenuator for 1300nm should be used and plugged at the transmitter source of the optical module on each side of the link.
     
    4. Another alternative for short reaches within the same location is to use a single-mode patch cable. There will be no saturation over single-mode fiber.

     

    10-Gigabit Ethernet

    The requirement for MCP is specified only for 10GBASE-LX4 and 10GBASE-LRM transceivers transmitting in the 1300nm window and in applications over multimode fiber. MCP should never be used in 10GBASE-SR links in the 850nm window. MCP is required for 10GBASE-LX4 and 10GBASE-LRM applications over FDDI-grade, OM1, and OM2 fiber types. MCP should never be used for applications over OM3, also known as "laser-optimized fiber."

    Notes for 10GBASE-LX4:
     
    1. In some cases, customers might experience that a link would be operating properly over OM2 fiber type without MCP. However chances of experiencing a properly operating link over FDDI-grade or OM1 fiber types without MCP are very low.
     
    2. In the event customers remain reluctant to deploy MCP cables over OM2, and for customers using OM3 cables, it is required to a plug a 5dB attenuator for 1300nm at the transmitter source of the optical module on each side of the link in order to avoid saturation, and potential subsequent link flaps and damage to the device.
     
    3. Another alternative for short reaches within the same location is to use a single-mode patch cable. There will be no saturation over single-mode fiber. Please note the 10GBASE-LX4 devices can reach up to 10 km over single-mode fiber as per compliance to IEEE.
     
    Notes for 10GBASE-LRM:
     
    1. For customers using OM3 fiber type, MCP should not be used. It is highly recommended to measure the power level before plugging the fiber into the adjacent receiver. When the received power is measured to be above 0.5dBm, a 5dB attenuator for 1300nm should be used and plugged at the transmitter source of the optical module on each side of the link.
     
    2. Another alternative for short reaches within the same location is to use a single-mode patch cable. There will be no saturation over single-mode fiber. Please note the 10GBASE-LRM devices can reach up to 300 meters over single-mode fiber.

     

    Notes for the Installation of MCPs

    When using 1000BASE-LX/LH, 10GBASE-LX4 and 10GBASE-LRM transceivers with legacy 62.5µm or 50µm multimode fiber, you must install MCP between the transceiver and the multimode fiber cable on both ends of the link. The MCP is required for all links over FDDI-grade, OM1 and OM2 fiber types, and should never be used for applications over OM3 and more recent fiber types.

    Note: It is not recommended using 1000BASE-LX/LH, 10GBASE-LX4 and 10GBASE-LRM transceivers with multimode fiber and no patch cable for very short link distances (tens of meters). The result could be an elevated Bit Error Rate (BER) and receiver damage.

    The MCP is installed between the transceiver and the patch panel. Two MCPs are required per installation. To install the patch cable, follow these steps:
     
    Step 1 - Plug the single mode fiber connector into the transmit bore of the transceiver.
    Step 2 - Plug the other half of the duplex connector into the receive bore of the transceiver.
    Step 3 - At the other end of the patch cable, plug both multimode connectors into the patch panel.
    Step 4 - Repeat Step 1 through Step 3 for the second transceiver located at the other end of the network link.
    Read more »
  • Fiber Media Converter Tutorial

    Fiber media converter is a cost-effective solution to overcome the bandwidth and distance limitations of traditional network cable. It dramatically increases the bandwidth and transmission distance of the local area network (LAN) by allowing the use of fiber and integrating new equipment into existing cabling infrastructure. To better understand it, this article will give an overview of fiber media converter.

    What is Fiber Media Converter?

    Fiber media converter is a transfer media that connects two dissimilar media types. Generally, it is a device that converts electrical signal used in copper unshielded twisted paired (UTP) network cabling into light waves used in fiber optic cabling, and vice versa. This kind of fiber media converter is called copper-to-fiber media converter that provides a simple way to introduce fiber into a LAN without tearing out the existing copper wiring or making changes to copper-based switches. Furthermore, there is another kind of fiber media converter that supports fiber-to-fiber conversion, which provides connections between dual-fiber and single-fiber or between multimode fiber and single-mode fiber. Fiber-to-fiber media converters also provide a cost-effective solution for wavelength conversion in Wavelength Division Multiplexing (WDM) applications, which are also known as transponders.

    Types of Fiber Media Converters

    There are a wide variety of fiber media converters available in the market. According to different criteria, fiber media converters may be classified into different types.

    Managed VS Unmanaged

    The managed fiber media converter has the functions of networking monitoring, fault detection and remote management. It helps the network administrator to easily monitor and manage the network. An unmanaged fiber media converter, however, allows for simple communication with other devices and does not have the monitoring and management functions that managed fiber media converter has.

    Platform: Stand-Alone VS Modular Chassis-Based

    According to the platform type, fiber media converters can be divided into stand-alone fiber media converter and modular chassis-based fiber media converter. Stand-alone fiber media converters are designed to be used in where a single or limited number of converter(s) need(s) to be quickly implemented. Modular chassis-based fiber media converters, however, are used in high-density applications that multiple points of copper and/or fiber integration are essential.

    Copper-to-Fiber Media Converter VS Fiber-to-Fiber Media Converter

    According to media types, fiber media converters may be classified into copper-to-fiber media converter and fiber-to-fiber media converter.

    Copper-to-Fiber Media Converter

    Copper-to-fiber media converters are the key to integrating fiber into a copper infrastructure. According to different applications, copper-to-fiber media converters may be further divided into Ethernet copper-to-fiber media converters, video-to-fiber media converters and serial-to-fiber media converters.

    Fs copper-to-fiber-media-converter.jpg

    Ethernet Copper-to-Fiber Media Converter

    This kind of fiber media converter supports the IEEE 802.3 standard and provides connectivity for Ethernet, fast Ethernet, Gigabit and 10 Gigabit Ethernet devices. SC to RJ45 media converters, SFP to RJ45 media converters, PoE media converters, mini media converters and industrial media converters are all among this type.

    Fs ethernet-copper-to-fiber-media-converter.jpg

    The SC to RJ45 media converter comes with RJ45 and SC ports, which is designed to be used with fiber cable preterminated with the SC-type connector.The SFP to RJ45 media converter comes with RJ45 and pluggable fiber optics ports, which allows for flexible network configurations using SFP transceivers. PoE media converters can transparently connect copper to fiber while providing Power-over-Ethernet (PoE) to standards-based PoE compliant devices such as IP cameras, VoIP phones and wireless access points. Mini media converter is a miniature-sized copper-to-fiber converter. It is ideal for bringing fiber to the desktop and for mobile applications where light weight, compact size and low power are required.Industrial media converters are compact and robust devices designed to convert Gigabit Ethernet or Fast Ethernet networks into Gigabit or Ethernet fiber optic networks.

     

    Video Copper-to-Fiber Media Converter

    Video copper-to-fiber media converter also called fiber optic multiplexer, which is used to transmit and receive signals such as video, audio, data and Ethernet. fiber optic multiplexers are devices that process two or more light signals through a single optical fiber (as shown in the following figure), increasing the amount of information that can be carried through a network. Since signals may be analog or digital, video copper-to-fiber can be further divided into converters transmitting analog signals and converters transmitting digital signals. As the name applies, converters transmitting analog signals give amplitude or frequency modulation of the electric signal and then convert it into optical signal. Demodulation will also be done at the receiving end. Converters transmitting digital signals, however, digitize and multiplex the video, audio and data signals, transforming multiple low-speed digital signals into one high-speed signal. This high speed signal will then be turned into optical signal transmitting on a fiber.

    Fs vedio-copper-to-fiber-media-converter.png

    In accordance with different applications, there are three commonly used video copper-to-fiber media converters: plesiochronous digital hierarchy (PDH) multiplexers, synchronous digital hierarchy (SDH) multiplexers and synchronous plesiochronous sigital hierarchy (SPDH) multiplexers. Using the PDH fiber transmission technologies, PDH multiplexers are E1 point-to-point optical transport equipment. And the general transmission capacity of this kind of multiplexer is 4E1,8E1 and 16E1. SDH multiplexers, having a large transmission capacity, are designed to support end-to-end provisioning and management of services across all segments of the optical network. SPDH multiplexers adopt both PDH and SDH technologies. It is a PDH transmission system that based on the PDH code speed adjustment principle at the same time, use as far as possible parts of the SDH network technology.

    Serial-to-Fiber Media Converter

    This kind of media converter provides fiber extension for serial protocol copper connections. It accepts serial data on one port in RS232, RS485 or other format and convert the serial data stream into a fiber optic signal to a matching unit at the other end of the fiber span.

    Fs serial-to-fiber-media-converter.jpg

    Fiber-to-Fiber Media Converter

    Fiber-to-fiber media converters are used to extend network distance by providing connectivity between multimode and single-mode fiber, between different “power” fiber sources and between dual fiber and single-fiber. Furthermore, they also support conversion from one wavelength to another. Mode converter and WDM OEO transponder are two common types of fiber-to-fiber media converters.

    Mode Converter

    A mode converter can be used to allow for an adiabatic transition between two optical modes. Other than cross-connecting different fiber types, mode converters can also re-generate optical signals, extending transmission distance and double fiber cable usage. It is usually applied in multi-mode to single-mode fiber conversion.

    Fs mode-converter.jpg

    WDM OEO Transponder

    When a fiber media converter is used in the WDM system, it is called WDM OEO transponder which converts the incoming signal from the end or client device to a WDM wavelength. WDM OEO transponders are often used for dual fiber to single fiber conversion and wavelength conversion.

    Networks may require conversion between dual and single-fiber, depending in the type of equipment and the fiber installed in the facility. The following figures shows the role of WDM transponder played in the fiber optic network.

    Fs wdm-oeo-transponder-dual-fiber-to-single-fiber-conversion.jpg

    WDM OEO transponders are capable of wavelength conversion by using small form-factor pluggable (SFP) transceivers that transmit different wavelengths, provide a cost-effective solution to convert from standard optical wavelengths (850nm, 1310nm and 1550nm) of legacy equipment to optical wavelengths specified for WDM networks.

    Fs wdm-oeo-transponder-wavelength-conversion.jpg

    Selection Guide of Fiber Media Converters

    A proper fiber media converter may provide a cost-effective solution for extending Ethernet transmission while reducing cable and labor cost. When selecting fiber media converters for your network, the following points should be taken into consideration:

    The chip of the fiber media converter shall work in both full-duplex and half-duplex systems. The reason is that some N-Way Switches and HUBs may use half-duplex mode operations, and serious collision and data loss may be caused if the fiber media converter only supports full-duplex operation. Connection test should be done between the fiber media converter and different optical fiber splices. Otherwise, data loss and unstable transmission may happen on account of incompatibility between different fiber media converters.To ensure the proper operation of the fiber media converter, temperature measurement is also necessary. This is because the fiber media converter may not work correctly in high-temperature environment. Thus, it is important to know exactly its working temperature.Safety device guarding against data loss shall be equipped in the fiber media converter.The fiber media converter shall meet the IEEE802.3 standards. If not, there must be a risk of incompatibility.
     
    For a selection of Compufox fiber media converters, please click on the link below:
     
     
    Read more »
RSS