qsfp-transceivers.com
Welcome
Login / Register

Most Popular Articles


  • Polarity and MPO Technology in 40/100GbE Transmission

    It have been proved that reducing cable diameters and increasing connection densities offered by fiber links would be extremely valuable during installation in constrained space, like data center, large enterprise equipment rooms, central office, etc. With the market turning to 40/100G transmission, to reduce congestion during cabling and make it easier to organize equipment cable runs, the network designers turns to MPO/MTP technology and components for today's duplex fiber transmission. Then, network designers face another challenge which is how to assure the proper polarity of these array connections using MPO/MTP components from end-to-end.

    Traditionally, a fiber optic link requires two fibers for full duplex communications. It is very important to ensure that the equipment on the link are connected properly at each end. However, when the link contains two or more fibers, maintain the correct polarity across a fiber network become more complex, especially when using multi-fiber MPO components for high data rate transmission. Luckily, pre-terminated MPO components adopt humanized design for polarity maintenance and the TIA 568 standard provides three methods for configuring systems to ensure that proper connections are made. This article will introduce polarity in MPO system and 40/100GbE polarization connectivity solutions in details.

    Polarity in MPO Components

    To maintain the correct polarity in MPO systems, the property of the components of MPO systems should be understood firstly. This part will introduce the basic components that are used in MPO system.

    MPO Connector: To understand the polarity in 40/100 GbE transmission, the key of MPO technology—MPO connector should be first introduced. MPO connector usually has 12 fibers. 24 fibers, 36 fibers and 72 fibers are also available. Each MTP connector has a key on one of the flat side added by the body. When the key sits on the bottom, this is called key down. When the key sits on the top, this is referred to as the key up position. In this orientation, each of the fiber holes in the connector is numbered in sequence from left to right and is referred as fiber position, or P1, P2, etc. A white dot is additionally marked on one side of the connector to denote where the position 1 is. (shown in the following picture) The orientation of this key also determines the MTP cable's polarity.

    MPO connector

     

    MPO Adapter: MPO (male) connectors are mated to MPO(female) connectors using a MPO adapter. As each MPO connector has a key, there are 2 types of MPO adapters:

    Type A—key-up to key-down. Here the key is up on one side and down on the other. The two connectors are connected turned 180° in relation to each other.Type B—key-up to key-up. Here both keys are up. The two connectors are connected while in the same position in relation to each other.

     

    MPO adapter

     

    MPO Cables: MPO trunk cable with two MPO connectors (male/female) on both side of the cable serves as a permanent link connecting the MPO modules to each other, which is available with 12, 24, 48, 72 fibers.

    MPO harness cable, which is terminated with a male/female connector on the MPO side and several duplex LC/SC connectors on the other side, provides a transition from multi-fiber cables to individual fibers or duplex connectors.

    MPO Cassette: Modular MPO cassette is enclosed unit that usually contains 12 or 24-fiber factory terminated fan-outs inside. It enables the user to take the fibers brought by a trunk cable and distribute them to a duplex cable with a MPO connector (at the rear) to the more common LC or SC interface (on the front side). The following is a MTP cassette with 6 duplex LC interface and a MTP connector.

    MTP cassette

    Three Cables for Three Polarization Methods

    The three methods for proper polarity defined by TIA 568 standard are named as Method A, Method B and Method C. To match these standards, three type of MPO truck cables with different structures named Type A, Type B and Type C are being used for the three different connectivity methods respectively. In this part, the three different cables will be introduced firstly and then the three connectivity methods.

    MPO Trunk Cable Type A: Type A cable also known as straight cable, is a straight through cable with a key up MPO connector on one end and a key down MPO connector on the opposite end. This makes the fibers at each end of the cable have the same fiber position. For example, the fiber located at position 1 (P1) of the connector on one side will arrive at P1 at the other connector. The fiber sequence of a 12 fiber MPO Type A cable is showed as the following:

    Type A cable

    MPO Trunk Cable Type B: Type B cable (reversed cable) uses key up connector on both ends of the cable. This type of array mating results in an inversion, which means the fiber positions are reversed at each end. The fiber at P1 at one end is mated with fiber at P12 at the opposing end. The following picture shows the fiber sequences of a 12 fiber Type B cable.

    Type B cable

    MPO Trunk Cable Type C: Type C cable (pairs flipped cable) looks like Type A cable with one key up connector and one key down connector on each side. However, in Type C each adjacent pair of fibers at one end are flipped at the other end. For example, the fiber at position 1 on one end is shifted to position 2 at the other end of the cable. The fiber at position 2 at one end is shifted to position 1 at the opposite end etc. The fiber sequence of Type C cable is demonstrated in the following picture.

    Type C cable

    Three Connectivity Methods

    Different polarity methods use different types of MTP trunk cables. However, all the methods should use duplex patch cable to achieve the fiber circuit. The TIA standard also defines two types of duplex fiber patch cables terminated with LC or SC connectors to complete an end-to-end fiber duplex connection: A-to-A type patch cable—a cross version and A-to-B type patch cable—a straight-through version.

    duplex patch cable

    The following part illustrates how the components in MPO system are used together to maintain the proper polarization connectivity, which are defined by TIA standards.

    Method A: the connectivity Method A is shown in the following picture. A type-A trunk cable connects a MPO module on each side of the link. In Method A, two types of patch cords are used to correct the polarity. The patch cable on the left is standard duplex A-to-B type, while on the right a duplex A-to-A type patch cable is employed.

    Method A

    Method B: in Connectivity Method B, a Type B truck cable is used to connect the two modules on each side of the link. As mentioned, the fiber positions of Type B cable are reversed at each end. Therefore standard A-to-B type duplex patch cables are used on both sided.

    Method B

    Method C: the pair-reversed trunk cable is used in Method C connectivity to connect the MPO modules one each side of the link. Patch cords at both ends are the standard duplex A-to-B type.

    Method C

    Upgrade to 40/100GbE With Correct Polarity

    The using of MPO/MTP connectors for 40/100G transmission is achieved with multimode fiber by transmitting multiple parallel 10G transmissions that will then be recombined when received. This method has been standardized. The following is to offer 40G transmission solution and 100G respectively.

    40G Transmission Connectivity

    The 40G transmission usually uses 12-fiber MPO/MTP connectors. There are eight lanes within twelve total positions being employed for transmitting and receiving signals. Looking at the end face of the MPO/MTP connector with the key on top, the four leftmost positions are used to transmit, the four rightmost positions are used to receive, the four in the center are unused. The following picture shows the optical lane assignments. (Tx stands for Transmit, Rx stands for Receive) This approach would transmit 40G using for parallel 10G lanes in each direction according to 40GBase-SR4.

    40G transmission

    100G Transmission Connectivity

    The 100G transmission over multimode requires a total of 20 fibers, 10 for transmitting and 10 for receiving. There are three options which is introduced as following:

    The first method is to use a 24-fiber MPO/MTP connector with the top center 10 positions allocated for receiving and the bottom 10 position allocated for transmitting,as shown in the following figure. This method is recommended by IEEE.

    100G transmission

    The second option is to use two 12-fiber MPO/MTP connectors side by side. The 10 positions in the center of the connector on the left are used for transmitting and the center 10 positions of the left are used for receiving.

    100G transmission

    The third way of 100G transmission also uses two 12-fiber MPO/MTP connectors, but it uses the stacked layout as showed in the following figure. The ten center positions of the top connector are used for receiving and the ten center position of the bottom are used for transmitting.

    100G transmission

    Understand Polarity in 40/100G

    Any transmit position should be connected to its own receive position. Here's an analogy to illustrate: Think of ball players. You have pitchers & catchers. For 10G transmission, Pitcher 1 needs to throw to Catcher 1, Pitcher 2 to Catcher 2 and so on. (showed on the left side of the following picture) For 40/100G, any pitcher can throw to any catcher.(showed on the right side of the following picture)

    10/40/100G polarity understanding

    But if you've got two catchers looking at each other as showed in the following picture, there isn't a whole lot happening.

    wrong polarity

    Conclusion

    Network designer using MPO/MTP components to satisfy the increasing requirement for higher transmission speed, during which one of the big problems—polarity, can be solved by selecting the right types of MPO cables, MPO connectors, MPO cassette and patch cables. Consider the polarity method to be used and selecting the correct MPO/MTP components to support that methods, the proper solution for 40/100G transmission would be achieved with high density and flexibility and reliability.

    Read more »
  • Huawei Completes 5G Key Technology Tests in the Field Trial Sponsored by IMT-2020 5G Promotion Group

    [Shenzhen, China, May 27, 2016] Huawei completed the first phase of key 5G technology tests as a part of a series field trials defined by the IMT-2020 5G Promotion Group. In April 2016, the outdoor macro-cell tests, conducted in Chendu, China, consist of a number of the foundational key enabling technologies and an integrated 5G air-interface. The test results successfully demonstrated that the new 5G air interface technology can effectively improve spectrum efficiency and to meet diverse service requirements for 5G defined by ITU-R.


    Huawei completes 5G key technology tests in 5G field trial

    Strong Promotion for Global Partnership on 5G Technology Innovation and a Global 5G Standard

    Launched by China Academy of Information and Communication Technology (CAICT), the IMT-2020 5G Promotion Group aims to foster a joint effort to promote 5G technology evaluation and field test among the global mobile industry and ecosystem to ensure the successful commercial deployment by 2020. One of the key objectives for IMT-2020 5G Promotion Group is to realize the 5G vision for the enhanced mobile broadband service as well as to create the new capabilities for 5G to enable the IoT and vertical services, this represents the unprecedented technical challenges such as to realize 10Gbps or peak rate 20Gbps user data rate, 100 billion connections, and 1 ms of end-to-end network latency for the 5G air interface.

    Early this year, IMT-2020 5G Promotion Group announced a three phase 5G networks trial plan, spanning from 2016 to 2018, with a first phase test from September 2015 to September 2016. The first phase test is focused on key radio technologies and performance test.

    As one of the core members in the IMT-2020 5G Promotion Group, Huawei actively contributed IMT-2020 5G Promotion Group and 5G technology test. In addition, Huawei established an extensive collaboration with CAICT, China Mobile, China Unicom, and China Telecom in the Chinese operator community to explore the innovative air-interface technologies to achieve best spectral efficiency and massive links capabilities. Huawei’s effort is focused on New Radio (NR) technology, which includes the optimized new air-interface, full-duplex and massive MIMO technologies, these are the enabling technologies to achieve the superior end-user experience for the emerging mobile broadband service such as 4K, 8K and virtual reality and augmented reality.

    Best-in-Class Test Results Using 5G New Air Interface

    The 5G air interface technology has been implemented through three novel foundational technologies, i.e., filtered Orthogonal Frequency Division Multiplexing (F-OFDM), Sparse Code Multiple Access (SCMA) and Polar code to meet 5G requirements and performance targets.

    F-OFDM technology is the basis for creating ultra-flexible air-interface to adaptively fit all the 5G use-case scenarios defined by ITU-R with a single radio technology platform. It allows multiple concurrent radio numerologies and frame structure to deliver very diverse services; F-OFDM can ensure the future-proof for the 5G system to meet emerging innovative services requirements. The test results showed that F-OFDM can increase system throughput by 10% using those free guard bands in LTE system. In addition, F-OFDM supports asynchronous transmission from different users. Test results showed that it will provide 100% higher system throughput compared with that in LTE system in the presence of mixed service on the same carrier frequency with mixed radio numerologies. .

    SCMA is to support massive connections and obtain higher system throughput simultaneously via the joint optimization on sparse SCMA codebook design and multi-dimensional modulation. It can further consider optimization on power allocation among different SCMA layers especially in downlink to improve total system throughput. The test results showed that SCMA is to increase the uplink connection number by 300% and at the same time increased the downlink system throughput up to 80%.

    For Polar code, it allocates information to the highly reliable data locations in the code structure to transmit useful information of user and at the same time it supports channel coding of any code rate with an appropriate code construction to fit any future service requirements. The test results showed that Polar code provided coding gain from 0.5dB to 2.0dB compared with Turbo code used in LTE system.

    System Integration of Innovative 5G Air Interface Technologies

    The flexible system integration of several innovative 5G air-interface technologies, namely, F-OFDM, SCMA and massive MIMO has been verified in the first phase of key 5G technology tests. In the test, multi-user MIMO (MU-MIMO) supported up to 24 users and up to 24 parallel layers transmission on the same time-frequency resources. The test results showed that MU-MIMO can achieve 3.6Gbps cell average throughput using 100MHz system bandwidth, it is almost 10 times of that in LTE baseline system.

    The trial has validated the optimal integration of the above new radio technologies and the capability of flexible 5G air-interface technologies, the trial is also served as a technical re-risk to support the on-going 3GPP standardization work.

    Full Duplex Implemented in the First Phase of 5G Test

    Full Duplex mode has also been tested in the first phase of 5G test. In the initial test stage on Full Duplex, it allows simultaneous transmitting and receiving of data at the base station with three level cascaded technologies, namely, passive analog cancellation, active analog cancellation, and digital cancellation. The test results showed that the Full Duplex can provide self-interference cancellation capability more than 113dB in real world environment and result in a total 90% system throughput gain over the conventional half duplex mode used today.

    Huawei has successfully completed the first phase test of 5G technologies in China. "The trial of 5G technologies in China will be a great contribution to 5G applications in the future.” Dr. Wen Tong, Huawei 5G Chief Scientist emphasized that, "As a member of the IMT-2020 5G Promotion Group, Huawei is pleased to work with CAICT, China Mobile, China Unicom, and China Telecom, and took the initiative to be the first to complete 5G key technologies tests and corresponding system integration test based on our proposed 5G new air interface."

    He also announced the plan of the second phase of 5G test which will focus mainly on the wide coverage, high hotspot capacity, and massive connections with high reliability, low latency with reduced power consumption.

    Read more »
  • Introduction to Bi-Directional Transceiver Modules

    Almost all modern optical transceivers utilize two fibers to transmit data between switches, firewalls, servers, routers, etc. The first fiber is dedicated to receiving data from networking equipment, and the second fiber is dedicating to transmitting data to the networking equipment. But there is a type of fiber optic transceiver module called BiDi (Bi-Directional) transceiver to break this rule. What's BiDi transceiver? How does it work? And why people believe it will have broad market prospect? This tutorial will give you the answer.

    What's BiDi Transceiver?

    BiDi transceiver is a type of fiber optic transceivers which is used WDM (Wavelength Division Multiplexing) Bi-directional transmission technology so that it can achieve the transmission of optical channels on a fiber propagating simultaneously in both directions. BiDi transceiver is only with one port which uses an integral bidirectional coupler to transmit and receive signals over a single fiber optical cable. Thus, it must be used in pairs.

    How Does BiDi Transceiver Work

    The primary difference between BiDi transceivers and traditional two-fiber fiber optic transceivers is that BiDi transceivers are fitted with Wavelength Division Multiplexing (WDM) couplers, also known as diplexers, which combine and separate data transmitted over a single fiber based on the wavelengths of the light. For this reason, BiDi transceivers are also referred to as WDM transceivers.

    To work effectively, BiDi transceivers must be deployed in matched pairs, with their diplexers tuned to match the expected wavelength of the transmitter and receiver that they will be transmitting data from or to.

    For example, if paired BiDi transceivers are being used to connect Device A (Upstream) and Device B (Downstream), as shown in the figure below, then:

    Transceiver A's diplexer must have a receiving wavelength of 1550nm and a transmit wavelength of 1310nmTransceiver B's diplexer must have a receiving wavelength of 1310nm and a transmit wavelength of 1550nm
    Diplexers at Work in BiDi Optical Ethernet Transceivers

    Advantages of BiDi Transceivers

    The obvious advantage of utilizing BiDi transceivers, such as SFP+- BiDi and SFP-BiDi transceivers, is the reduction in fiber cabling infrastructure costs by reducing the number of fiber patch panel ports, reducing the amount of tray space dedicated to fiber management, and requiring less fiber cable.

    While BiDi transceivers (a.k.a. WDM transceivers) cost more to initially purchase than traditional two-fiber transceivers, they utilize half the amount of fiber per unit of distance. For many networks, the cost savings of utilizing less fiber is enough to more than offset the higher purchase price of BiDi transceivers.

    Read more »
  • Microsoft and Facebook to build subsea cable across Atlantic

    This post was authored by Frank Rey, Director, Global Network Acquisition, Microsoft Cloud Infrastructure and Operations.

    Today we’re excited to announce the latest step in our global cloud infrastructure as Microsoft and Facebook announce plans to build “MAREA” – a new, state-of-the art subsea cable across the Atlantic. The new MAREA cable will help meet the growing customer demand for high speed, reliable connections for cloud and online services for Microsoft, Facebook and their customers. The parties have cleared conditions to go “Contract-In-Force” with their plans, and construction of the cable will commence in August 2016 with completion expected in October 2017.

    AEC-OverviewMap

    We’re seeing an ever-increasing customer demand for high speed, reliable connections for Microsoft cloud services, including Bing, Office 365, Skype, Xbox Live, and Microsoft Azure. As the world continues to move towards a future based on cloud computing, Microsoft is committed to building out the unprecedented level of global infrastructure required to support ever faster and even more resilient connections to our cloud services. This robust, global infrastructure will enable customers to more quickly and reliably store, manage, transmit and access their data in the Microsoft Cloud.

    “In order to better serve our customers and provide the type of reliable and low-latency connectivity they deserve, we are continuing to invest in new and innovative ways to continuously upgrade both the Microsoft Cloud and the global Internet infrastructure,” said Frank Rey, director, global network acquisition, Microsoft Corp. “This marks an important new step in building the next generation infrastructure of the Internet.”

    MAREA will be the highest-capacity subsea cable to ever cross the Atlantic – featuring eight fiber pairs and an initial estimated design capacity of 160Tbps. The new 6,600 km submarine cable system, to be operated and managed by Telxius, will also be the first to connect the United States to southern Europe: from Virginia Beach, Virginia to Bilbao, Spain and then beyond to network hubs in Europe, Africa, the Middle East and Asia. This route is south of existing transatlantic cable systems that primarily land in the New York/New Jersey region. Being physically separate from these other cables helps ensure more resilient and reliable connections for our customers in the United States, Europe, and beyond.

    Microsoft and Facebook designed MAREA to be interoperable with a variety of networking equipment. This new “open” design brings significant benefits for customers: lower costs and easier equipment upgrades which leads to faster growth in bandwidth rates since the system can evolve at the pace of optical technology innovation. This is critical to ensure the Microsoft Cloud continuously improves to provide the highest availability and performance our customers need for their mission-critical workloads and data.

    Microsoft and Facebook are working with Telxius, Telefónica’s telecommunications infrastructure company, building upon their longstanding experience in subsea cables on this innovative new system. Telxius will serve as the operator of the system and sell capacity as part of their wholesale infrastructure business.

    As one of the largest cloud operators in the world, Microsoft has invested more than $15 billion (USD) in building a resilient cloud infrastructure and cloud services that are highly available and highly secure while lowering overall costs. Microsoft has now announced 32 Azure regions around the world with 24 generally available today – more than any other major cloud provider. This latest investment, together with Microsoft’s previously announced investments in global fiber assets including the NCP trans-Pacific subsea cable, is further proof of Microsoft’s commitment to empower every person and every organization on the planet to achieve more.

    Read more »
  • WDM Optical Networking Solutions

    COMPUFOX offers a number of  WDM Optical Networking solutions which allow transport associated with a mix of services up to 100 GbE over dark fiber and WDM networks providing for the whole set of probably the most demanding CWDM and DWDM network infrastructure needs. Because the physical fiber optic cabling is expensive to implement for every single service separately, its capacity expansion using a WDM is a necessity.

    WDM Architectures

    WDM architecture

     

    WDM (Wavelength Division Multiplexing) is a concept that describes combination of several streams of data/storage/video or voice on the same physical fiber optic cable by utilizing several wavelengths (or frequencies) of light with each frequency carrying a different sort of data. There's two types of WDM architectures: CWDM (Coarse Wavelength Division Multiplexing) and DWDM (Dense Wavelength Division Multiplexing). CWDM systems typically provide 18 wavelengths, separated by 20 nm, from 1470nm to 1610nm according to ITU-T standard G.694.2. However, for different applications, there are different ITU-T standard to define the specific wave range and channels. Compared to CWDM, DWDM is defined in terms of frequencies. Some DWDM network systems provide up to 96 wavelengths, typically without any more than 0.4 nm spacing, roughly over the C-band range of wavelengths.

    CWDM Technology

    CWDM is proved to be the initial access point for many organizations due to its lower cost. Each CWDM wavelength typically supports as much as 2.5 Gbps and could be expanded to 10 Gbps support. This transfer rates are sufficient to aid GbE, Fast Ethernet or 1/2/4/8/10G Fibre Channel, along with other protocols. The CWDM is limited to 16 wavelengths and is typically deployed at networks as much as 80 km since optical amplifiers can't be used due to the large spacing between channels.

    DWDM Technology

    DWDM is a technology allowing high throughput capacity over longer distances commonly ranging between 44-88 channels/wavelengths and transferring data rates up to 100 Gbps per wavelength. Each wavelength can transparently have a wide range of services. The channel spacing from the DWDM solutions is defined by the ITU standards and can range from 50 GHz and 100 GHz (the most widely used today) to 200 GHz. DWDM systems can provide up to 96 wavelengths (at 50 GHz) of mixed service types, and can transport to distances up to 3000 km by deploying optical amplifiers (e.g., DWDM EDFA) and dispersion compensators thus enhancing the fiber capacity with a factor of x100. Due to its more precise and stabilized lasers, the DWDM technology tends to be more expensive in the sub-10G rates, but is really a more appropriate solution and it is dominating for 10G service rates and above providing large capacity data transport and connectivity over long distances at affordable costs.

    Note: COMPUFOX WDM optical networking goods are designed to support both CWDM and DWDM technology by utilizing standards based pluggable  CWDM/DWDM Transceivers such as SFP, XFP and SFP. The technology used is carefully calculated per project and according to customer requirements of distance, capacity, attenuation and future needs.

    DWDM OVER CWDM NETWORK

    The main benefit of CWDM is the price of the optics that is typically 1 / 3 of the price of the equivalent DWDM optics. This difference in economic scale, the limited budget that lots of customers face, and typical initial requirements to not exceed 8 wavelengths, means that CWDM is a popular entry point for a lot of customers. With COMPUFOX WDM equipment, a customer can start with 8 CWDM wavelengths however grow by introducing DWDM wavelengths in to the mix, utilizing the existing fiber and maximizing roi. By utilizing CWDM and DWDM network systems or the mixture of thereof, carriers and enterprises are able to transport services as much as 100 Gbps of data.

    Typically CWDM solutions provide 8 wavelengths capability enabling the transport of 8 client interfaces over the same fiber. However, the relatively large separation between your CWDM wavelengths allows growth of the CWDM network with an additional 44 wavelengths with 100 GHz spacing utilizing DWDM technology, thus expanding the present infrastructure capability and making use of the same equipment included in the integrated solution.

    Fiberstore

    Additionally, the normal CWDM spectrum supports data transport rates as high as 4.25 Gbps, while DWDM is utilized more for large capacity data transport needs as high as 100 Gbps. By mapping DWDM channels inside the CWDM wavelength spectrum as demonstrated below, higher data transport capacity on the same fiber optic cable is possible without any requirement for changing the existing fiber infrastructure between the network sites. As demonstrated through the figure beside, CWDM occupies the following ITU channels: 1470 nm, 1490 nm, 1510 nm, 1530 nm, 1550 nm, 1570 nm, 1590 nm, and 1610 nm, each separated from the other by 20 nm. COMPUFOX can insert into the of the 4 CWDM wavelengths (1530 nm,1550 nm,1570 nm and 1590 nm), a set of additional 8 wavelength of DWDM separated from one another by only 0.1 nm. By doing so up to 4 times, the CWDM network capability can easily expand by up to 28 additional wavelengths.

    The other figure below further demonstrates in detail the expansion capabilities via the DWDM spectrum. As seen below, just one outgoing and incoming wavelength of the existing CWDM infrastructure can be used for 8 DWDM channels multiplexing in to the original wavelength. Since this DWDM over CWDM network solution is integrating the DWDM transponders, DWDM MUX/DeMUX and EDFA (optical amplifier if needed), the entire solution is delivered simply by adding a really compact 1U unit. This expansion is achieved with no service interruption to the remaining network services, or to the data, and with no need to change or replace any of the working CWDM infrastructures.

    Fiberstore

    Advantages of COMPUFOX WDM Optical Networking Solutions

    COMPUFOX CWDM and DWDM network equipment provides the following advantages:
     
    Low-cost initial setup with targeted future growth path.
    Easy conversion and upgrade capabilities up to 44 wavelengths
    Easy upgrade to support 10G, 40G and 100G services
    Seamless, non traffic effective network upgrades
    Reliable, secure, and standards based architecture
    Easy to install and maintain
    Full performance monitoring
     

    With COMPUFOX compact CWDM solutions, you could get all of the above benefits and much more (such as remote monitoring and setup, integrated amplifiers, protection capabilities, and integration with 3rd party networking devices, etc.) inside a cost effective 1U unit, enabling you to expand as you grow, and utilize your financial as well as physical resources towards the maximum.

    To purchase your CWDM and DWDM transceivers, please click on the links below:

     

    Read more »
RSS